If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=43
We move all terms to the left:
8x^2-(43)=0
a = 8; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·8·(-43)
Δ = 1376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1376}=\sqrt{16*86}=\sqrt{16}*\sqrt{86}=4\sqrt{86}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{86}}{2*8}=\frac{0-4\sqrt{86}}{16} =-\frac{4\sqrt{86}}{16} =-\frac{\sqrt{86}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{86}}{2*8}=\frac{0+4\sqrt{86}}{16} =\frac{4\sqrt{86}}{16} =\frac{\sqrt{86}}{4} $
| −2c+1=15 | | a+20/5=7 | | x3=5390 | | 3p–18=7p+2 | | (9x+37)+(14x-23)=180 | | 9f+6/97-5=2.276 | | d/3+2=15 | | 2x^{2}+4=10 | | (3y+4)/2=3 | | 13t+3=16 | | -0,04×0,36-0,36x+6,4=0 | | (15x+29)+(26x-23)=180 | | -0,04×0,36e-0,36+6,4=0 | | 8n-22=5n-5 | | (z-9)(z+7)=0 | | v-8.86=3.32 | | -0.04×0.36e-0.36+6.4=0 | | (15x+29)=(26x-23) | | w+1.6=8.24 | | -x/3-5/6=-4/3 | | -x/3-5/6=-473 | | w+1.46=8.22 | | 41+16h=825 | | 5(t+20)=-40 | | -4(v-2)=-2v+2 | | -0.04×0.36e(-0.36+6.4)=0 | | -7x+39=3(x-7) | | -5(y-3)(-y-9)=0 | | X=7.5+5y | | -6(y+1)=-4y+14 | | -9=j+997/10 | | w/13+120=126 |